a2 United States Patent

US009098453B2

(10) Patent No.: US 9,098,453 B2

Griffith et al. 45) Date of Patent: Aug. 4, 2015
(54) SPECULATIVE RECOVERY USING (56) References Cited
STORAGE SNAPSHOT IN A CLUSTERED
DATABASE U.S. PATENT DOCUMENTS
7,434,087 B1 10/2008 Singh
(71) Applicant: International Business Machines 2007/0083645 Al 4/2007 Rlélégck et al.
Corporation, Armonk, NY (US) 2007/0245167 Al 10/2007 De La Cruz et al.
2009/0150718 Al 6/2009 Park et al.
(72) Inventors: Douglas Griffith, Ausin, TX (US): 20110071981 A1+ 32011 Ghosh eval. - 707634
Angela Astrid Jaehde, Austin, TX (US): 5013/0046731 Al ~ 2/2013 Ghosh etal.
Matthew Ryan Ochs, Austin, TX (US) 2014/0068040 Al* 3/2014 Netietal.ccooevvn.e.. 709/223
(73) Assignee: INTERNATIONAL BUSINESS OTHER PUBLICATIONS
MACHINES CORPORATION, Yong-I1,J. et al.; “An extendible hashing based recovery method in a
Armonk, NY (US) shared-nothing spatial database cluster”; Computational Science and
its Applications—ICCSA 2006, International Conference Proceed-
(*) Notice: Subject to any disclaimer, the term of this ings; pp. 1126-1135, 2006.
patent is extended or adjusted under 35 IBM; ““Tivoli Storage FlashCopy Manager”; IBM Corporation, www.
U.S.C. 154(b) by 168 days. ibm.com/redbooks/SC27-2503-00 . . . ; 2009.
(Continued)
(21) Appl. No.: 13/940,013
Primary Examiner — Dieu-Minh Le
(22) Filed: Jul. 11, 2013 (74) Attorney, Agent, or Firm — Garg Law Firm, PLLC;
Rakesh Garg; Thomas Tyson
(65) Prior Publication Data
(57) ABSTRACT
US 2015/0019909 A1 Jan. 15, 2015 .
A system, and computer program product for recovery in a
(51) Tnt.CL datgbase are pr9V1ded in the 1llu§tratlve embodiments. A fe.ul-
GO6F 11/00 (2006.01) ure is detected in a first computing node, the first computing
GO6F 11/14 (200 6. o1) node serving the database in a cluster of computing nodes. A
GO6F 1120 (2006.01) snapshot is created of data of the database. A subset of log
’ entries is applied to the snapshot, the applying modifying the
(52) US.CL) snapshot to result in a modified snapshot. An access of the
CPC Go6F 1.1/ 1458 (2013.01); GOGF 1.1/ 1412 first computing node to the data of the database is preserved.
(2013.01); GO6F .H/ 1469 (2013.01); GO6F Responsive to receiving a signal of activity from the first
. 111 471 (20_13'01)’ GOGF 11/2028 (2013.01) computing node during the applying and after a grace period
(58) Field of Classification Search has elapsed, the applying is aborted such that the first com-

CPC .ot GOG6F 11/1412
USPC oot 714/15, 16, 2, 20, 41
See application file for complete search history.

TAKEOVER
APPLICATION

105

STORAGE 108

DATABASE
INSTANCE

puting node can continue serving the database in the cluster.

7 Claims, 13 Drawing Sheets

CLIENT 11

5

CLIENT 112

DATABASE
INSTANCE
107

US 9,098,453 B2

Page 2
(56) References Cited International Searching Authority, Notification of Transmitial of the
International Search Report and the Written Opinion of the Interna-
OTHER PUBLICATIONS tional Searching Authority, or the Declaration, Feb. 20, 2015.

Lawson, S. et al.; “Best Practices for DB2 on z/OS Backup and
Recovery”; BMC Software. www.bme.com.; www.db2expert.com;
Jun. 2009. * cited by examiner

US 9,098,453 B2

Sheet 1 of 13

Aug. 4, 2015

U.S. Patent

L1 LN3ITO

OLT IN3ITO

g0t Y3IAY3S
700 —
JONVLSNI e]
3asvav.iva —
. . 80l I9VHOLS
i T 901
NOILYOITdd¥Y
HINOINVL H TITTTTTT
] 601 Yiva

cor

L1 LN3ITO

HHOMLIN

<ol
JONVISNI
asvavivd

r s

SIL
NOILVOI1ddV
HINOIMVL H|

['Ol

Q
(=]
-

US 9,098,453 B2

Sheet 2 of 13

Aug. 4, 2015

U.S. Patent

b4 %4
d31dvavy
oz - vasrd HHOMLAN
Yee Yadd d31dvavy s30IA3a S1H0d
INOY IN3AOWN JASNOW ANV 819di10d H3HL1O 0S¢ 9c¢
UVvOgAIM ANV dsn INOY-AD MSId
) s ¥0¢ vz sne
secsnd H21/dS
(534 X4 ©
QIS H31dvav oldanvy __
__ - 0le
H0SS3ID0Hd
AHOWEN NIVIN HOW/AN SOIHAVYD
30¢
ﬂ‘ LINN DNISSID0¥d
002
Z DIA

>

US 9,098,453 B2

6¢ S1v3Idldv3IH

oy
0

o
89

~ N

<0l
(o3
<O

95t 90¢

Sheet 3 of 13

dIHSY3dNTINW \\.\} dIHSY3dNTIW
858 80E
ONIOVSSIN ONIOVSSIN
EREMEEL] 379vIT3d

Aug. 4, 2015

[[
HIOYNYIN k443 b - HIOVNYIN
I0oHNOS3Y OIS plOISEM

R
IONVYLSNI IONYLSNI
S8 Isvaviva Isvaviva 208
(9 3Q0ON) IAON YIAOINMVYL (v 3QON) IAON AMYAINd

U.S. Patent

£OI4

US 9,098,453 B2

(INIL A1d3Y 5071 a3LYNILST “B8)

(INIL A1d3Y 5071 a3LynILsT “B'e) SNOILYDIHILON

Sheet 4 of 13

Aug. 4, 2015

U.S. Patent

SNOILYDIILON H¥3aLsnio
¥3aLsnio #
[e]37 NOILYDI1ddY
NOILYDI1ddY — — HIANOTIMVL
HIANOIIVL ocy (134
Tt L
] 02% [AN
@ | || §
ad .-. ' ad
1% -
_— 457 -
ZS% 93doN Z0F ¥ 3AON

vy 'OId

US 9,098,453 B2

Sheet 5 0of 13

Aug. 4, 2015

U.S. Patent

1S AHINODTY I0HNOSIH JOVNVIN

16 S3Id0D 3SVAVLIVA AddvOsId/NIor3d

809 JANIL AVTd3d ©01 ILVAILST

0S SAIFILNT O01 ATddV

05 1OHSJVYNS 3Svavlvad Vv 31v3do

0S5 NOILYOINddVY 43A0IAHVL

$ OId

US 9,098,453 B2

Sheet 6 of 13

Aug. 4, 2015

U.S. Patent

--- suonoesuel) ||e uo pajejdwod Aejdal 6o

g-apou Aq ‘uonesio Joysdeus Jaye y-apou Aq pappe suonoesuel) [euonippe jo Aejdey

JUWOD JWILLIOD 1‘e8jeqal | p ‘040j0D HWIWO0D A ‘x soud q ‘e adAy
o LN o o O o iy puz | idyuopesg | uonoy
G6LoL 21 '6Z00L | '¢L ‘seooL | 'ZL '0000L | “LL 0LO0L | 'LL'OLOOL | 3LL'0000L
0020l SeooL 0€00L Scool 0cooL SLooL 0LooL S0l 0alL NST
V-8pou Ag SUCHOESUEL) [BUOHIPPE UMM ‘Y-8pou uo uonesado jo uoneuiwss) Jaye 6o
’]
’ .
’ .
".-- aJay |pun g-spou Ag paie|des 6o "-- 2J8Y nun y-apou Aq pakeldas Boq
' '
' '
A ‘N adAy JILUWIOD JWILIOD 1‘e8leqal | p ‘0Joj0D HWIWO0D A ‘x soud d ‘e adAy
P - oy oy O O A jyo puz | 1dvjyo uers uonoy
L1 'G6L0L S6L0L 21 °'S200L | "¢L 'seo0L | ‘2L '0000L 1 'LL 0LO0L | 'LL'OLOOL | ¥LL'0000L
oLeol 0020l GeooL 0€00L Gcool 0co0L SLooL 0L00L GolL 00L NST
“ --- g-spou Aqg paye|dwoo joysdeus uo Aejdsa. 6o
HWIWOD A ‘x 901d q ‘e adAy 1o pug | 1w pers uonoy
‘LL0L00L | ‘LL'oLo0L | ¥1L'0000L ’
0cooL SLooL 0Lo0L S0l (o]o]" NST
' (]
".-. SS)BUILIS) Y-8pou uo uoljelado sseqgejeq s — juiod siyy ye pajeald Joysdeug
A ‘n adfhy JIWWOD JWILLIoD 1‘e8leqal | p ‘010j0D Hwwoo A ‘% soud q ‘e adfy
o o A o o O 0 Iiyo pug | idjuo uers | uonoy
L1 'S6L0L S6L0L ¢1 'S¢00L | '¢L 'Sco0L | ‘¢L '0000L | “LL0L00L | 'LL'OLOOL | ¥LL'0000L
oLeol 0020l SeoolL 0€00L Scool 0cooL SLooL 0Lo0L o] (o]o]" NST
9 °OId

©
Q
©

<
O

N
©

O
O
O

U.S. Patent Aug. 4, 2015 Sheet 7 of 13 US 9,098,453 B2

|

New snapshot ---

FIG. 64

Snapshot created at this point (T)

o - o0
Yo Yo
(e <t © (e
O O
(e (e

U.S. Patent Aug. 4, 2015 Sheet 8 of 13 US 9,098,453 B2

FIG. 6B
6

Snapshot created at this point (T) --1

N o0
N N
(e <t © (e
N N
© ©

US 9,098,453 B2

Sheet 9 of 13

Aug. 4, 2015

U.S. Patent

31371dINOD AV1d3d ANV
AAISNOJSTH-NON JAON

(72
AV1d3d
90740 31VLS ANV
JAON AdVINIEL 40

F131dINODNI AV1d3d ANV
AAISNOJS3d 3AON

J13TdNOD AVId3d ANV
JAISNOdS3d 3AON

Y m
¥z Z
H JAON AYVYINIYH WOHS
lllllll decccanca
_\/_m_%mn_un_zmm_w_\ﬂu_\,_m_ﬁ_m._. < q | IOING3S ISVAVLVA INNSTY
‘AV1d3d 901 NOANVaY
anN3

L OId

)
~

907
(Av1d3d 507)
LOHSJYNS IHL OL IAON
ISVEVLVA AYVAINC IHL A9
3AVYIN STIYLNT 907 AlddV

0L
V1va 3svavivd
3HL OL ALIAILOINNOD
S.JdCON 3svavivda
AdVINIdd IALIISTHd
ANV V1vd 3svav.ivda 3HL 40
1OHSdVNS V 31VY3d0

A

c0.

ONILNO3IXT SI NOILVOI1ddV
3ASVEVLVA AYVINIED ¥V FdTIHM
JAON 3SVaVLVA AdVINIdd
Vv 40 3dN1iv4d v 103130

14vis

US 9,098,453 B2

908
H31SNTO IHL OL
JONFLSIXd S3AON 3Isvavivd
INFHHNONOD FLYNNAINOD

Sheet 10 of 13

%08
Ald3d D071 NHO4H3d
Ol 3ANIL ILVINILST

Aug. 4, 2015

208
S3IMLINT O01 av3ad

Q
s3]

U.S. Patent

14v1s

8 OId

US 9,098,453 B2

Sheet 11 of 13

Aug. 4, 2015

U.S. Patent

806

Cl6
3ISVAVLIVA AdVYINIEd 40
V1vad HLIM LOHSdVNS

d3ariddv-901 NIOrad

1OHSJAVNS
d3a'lddv -901 ddvosid

*

S3IA

A

¥16
431SNTO 3HL OL
HIAOIMVYL ILVOINNWINOD

916
H3AOIMVYL
3H1 3131dNOD

016
J0ON AYVINIEd NO¥
YIAOIMVL NIDIE

906
$3719V1d4300V
JOVNHO443d 3AON
AHVYNIEd

<€¢—0ON

(@]
[e2)

6Ol

06
O0T3HL NI
INIOd ¥ O1dN 3131dINOD SI
AV1d3d ©01 LVHL 10313d

1

<06
INISNOJS3Y SI 3AON
AHVNIYC 1VHL 103130

1yvis

US 9,098,453 B2

Sheet 12 of 13

Aug. 4, 2015

U.S. Patent

109030.1d abisw urewop 40 pus -

3ANIT440 :g-9poN D L Ba £'€'6

Joysdeus oAowa pue digsuone|al joysdeus ojeuruio) 76
Refdsrbol Hoqe L'e6

1~ Bua 10} suonoe Alanodal wiopad €6

v-8poN uo sulewsal |~ Bi1 aulwiajap FArAL

|~ Ba pue 9-apoN ‘g-apoN ‘v-2poN jo ejep aosuewioiad abueyosxe 1’26

1~ BJ 10} uoneEOO| MaU BUILLIB)BP 26

| Ba 1o} uoneLIOjUl BpoU @ a3k)S JO uoneziuoiysuks 1'6

1090301d abiaw urewop jo Je}s ---

:smoj|o} se aJe [0o0joud eBlsw utewop sy Buunp usye) suonoe auy ‘sl alaym)l Buines| |iejus |~ BJ Joj suonoe A1sA0o8l 8sed U|
§921N082. JO 19A09¥ e} oU o ased - Aejdas Boj jo uonajdwos aloyaq sjeayaa uoned yiomiau ay|

]00030.1d 9649UW UIBWIOP JO PUD --==========mn=mmmmmmmn 0l
1~ Bua 10} suonoe Alaaooal wuopad €6
1~ BJ 10} uonedO| MU sulwIL)ep 26
}_ BJ 10} uonewIojul @pou @ 93e)S JO UoNEZIUOIYDUAS 1'6
]090301d 9619 UIEWOP JO JIBYS ==mm==m=nsmmmmmmzmmmmnn 6
|eAl2@jul UOHEZI[IGE]S JO PUD ========msmmmmmmmmmmmzn 8
V-9pPON wouy sjeaqieay V-9pPON WoJ} sjeaqieay D-apou ‘g-apoN woul} sjeaqiiesy
S[eay-a4 uoIed HJOM]BU ===m==m=nsmmmmmmmmmmman Vi
! 9
|
|
|
1
|
_ —
| S
|
H | bBuigjou op_
UGNOE 93IN0Sal JO UoHEnoed | Ton5E 35IMGSe1 J0 UOHEOES ¥
0001 V-9PON UMGP-3poN | 5-5PON "G-oPON UMOP-9PON '€
13 poLiad 30.IB JO pPU ====m==s=s=mmmmcemnanan 4
V-9pON WoJ} sjeaqiieay ou V-9pPON WoJ} sjeaqieay ou €g-9pON WoJ} sjeaqlieay ou
V-01 "OI4 UONRIE HIOMIBU =mrmmmsmmemmmmmmemmann- 1
ANIT440 :2-3poN D LB 3ANIT440 :g-3poN D L Ba 3ANITINO :v-3poN D L B
0-9PON g-9PON V-9pON

US 9,098,453 B2

Sheet 13 of 13

Aug. 4, 2015

ANIT440 'v-8poN @ | B1
ANIT4H0 :g-9pON @ L b1
“Bi

|
[
| L
3ANITNO :D-3pON @ L B1 |
| ANI440 "V-9PON @ b
| bJjo sadinosal bululiews.l alinboe |
M)sip 10jeuipiood |
0] ,D-9PON Joj 9)3|dwod saldoHasqeiequiolal,, ajum | |} bJ jOo dnued|d/ asedjal
ssldodaseqeiequiolal | JSO| SYSIp 0] sS2008
JJUERIsuUl aseqejep |eulibLIO JO SHSIP UO SBAI9SA]88 _
aouejsul aseqgejep _m:__u_._o pue joysdeus o SQIAd peal _
1 B w.__smuw | ‘0L
z6
1’6
1~ BJ 10} UOIJed0] mau auiuiajep | 6
SIS 1dN0D INIHUNIONOD J4VS ‘doPON®@ | BJ | '8
pojs[dwios sey Agjdea boj | 7
Kejder boj iess | ‘9

smo|[o} se sI (g dels woly Bune)s SjusAs Jo MOj4 8U) ‘[eayal Jou ssop uonied yiomsu syy Aejdsd Boj jo poliad swiy syy Bulnp 4|
Ke|daa Boj jo uonajdwos aiojaq [eayal jou saop uoniued yomyau ayl

10290304d abJaw uleWOP JO pUd ---

3ANITLH0 :g-9poN @ | B €6

ANINNO :2-2PON @ L B 8'€¢6

L'€6
] B1JoO saoinosal bululewa aainboe
saldoposeqerequiolol
3oUEIs Ul 9SE(EJEp [EUIDLIO SYSIP UO SoAloSal Jas
SoUE)sSUl 9SEqEjep [euibio pue joysdeus JO SqIAd Peal

] b1ainboe 9°¢’6

FUINDIV :g-9poN D | B G'€'6

ANIT440 'v-9poN D | Ba ¥'€6

T b1 sjeunuis] £€6

313 1dNOD LNJHANINOD 34VS :9-9PON @ | bi e6

poje|duiod sey Aejdea boj 1'€6

} B4 40} suonoe Liaaooal waopad €6

g-9poN 0} 2A0W ||Im |~ Ba 3j0A 26

osor 1~ Ba pue H-apoN ‘g-apoN “vY-8pON j0 ejep asueuwiopad sbueyoxs 1'2°6

}~BJ 10} UOEDO| MBU BUILLIBIBP 26

| Bl 1o} ucnewliojul apau @ aje)s Jo UolRZIUoIYOUAS 1’6

109030.d 969U UIBLIOP JO JUB)S =====mmmmmmmmmmmmmmnann 6

q-01 "OId

U.S. Patent

:$MOJ||0} SE a.e |0o0joid sbew urewop sy Buunp usye; suonoe sy} ‘g-epPOoN 0} 31 Buirow L~ B1 10} suonoe A1sAco8) 8SED U|
$92.N0Sal JO 19A0dYE]) Jo ased - Aejdai Boj Jo uona|dwos al1oyaq sjeayal uomed yiomau ay |
D-8poN g-apoN V-apoN

US 9,098,453 B2

1
SPECULATIVE RECOVERY USING
STORAGE SNAPSHOT IN A CLUSTERED
DATABASE

BACKGROUND

1. Technical Field

The present invention relates generally to a system, and
computer program product for managing data. More particu-
larly, the present invention relates to a system, and computer
program product for speculative recovery using storage snap-
shot in a clustered database.

2. Description of the Related Art

High availability is a system design that ensures a prede-
termined level of operational performance during a given
period. Architectures for high availability of databases typi-
cally have two objectives—protecting the data from storage
hardware failures or catastrophic events, and reducing down-
time of the database. A clustered architecture is a high avail-
ability architecture where multiple servers communicate with
each other via shared network paths and cooperate to provide
a service.

In a clustered database, computing nodes in a cluster com-
municate with each other and cooperate to serve a database.
The clustered database architecture monitors database opera-
tion and performances and performs recovery steps if the
database is affected by an error in a clustered node.

An enterprise scale database typically has built-in high
availability infrastructure. General disaster recovery infra-
structure that is available on server nodes and data storage
platforms, such as local or geographic data replication or a
high availability clustering, can also be used to implement
high availability for a database. The term “disaster recovery”
is generally used for fallover between geographically distant
sites. For a fallover within a cluster where the nodes are in
geographic proximity, such as on the same campus, the term
“takeover” is more commonly used for the recovery opera-
tion.

SUMMARY

The illustrative embodiments provide a system, and com-
puter program product for speculative recovery using storage
snapshot in a clustered database. An embodiment detects a
failure in a first computing node, the first computing node
serving the database in a cluster of computing nodes. The
embodiment creates, using a processor and a memory, a snap-
shot of data of the database. The embodiment applies, using
the processor and the memory, a subset of log entries to the
snapshot, the applying modifying the snapshot to result in a
modified snapshot. The embodiment preserves an access of
the first computing node to the data of the database. The
embodiment aborts, responsive to receiving a signal of activ-
ity from the first computing node during the applying and
after a grace period has elapsed, the applying such that the
first computing node can continue serving the database in the
cluster.

Another embodiment includes computer usable code for
detecting a failure in a first computing node, the first comput-
ing node serving the database in a cluster of computing nodes.
The embodiment further includes computer usable code for
creating, using a processor and a memory, a snapshot of data
of the database. The embodiment further includes computer
usable code for applying, using the processor and the
memory, a subset of log entries to the snapshot, the applying
modifying the snapshot to result in a modified snapshot. The
embodiment further includes computer usable code for pre-

10

15

20

25

30

35

40

45

50

55

60

65

2

serving an access of the first computing node to the data of the
database. The embodiment further includes computer usable
code for aborting, responsive to receiving a signal of activity
from the first computing node during the applying and after a
grace period has elapsed, the applying such that the first
computing node can continue serving the database in the
cluster.

Another embodiment includes a storage device including a
storage medium, wherein the storage device stores computer
usable program code. The embodiment further includes a
processor, wherein the processor executes the computer
usable program code, and wherein the computer usable pro-
gram code includes computer usable code for detecting a
failure in a first computing node, the first computing node
serving the database in a cluster of computing nodes. The
computer usable program code further includes computer
usable code for creating, using a processor and a memory, a
snapshot of data of the database. The computer usable pro-
gram code further includes computer usable code for apply-
ing, using the processor and the memory, a subset of log
entries to the snapshot, the applying modifying the snapshot
to result in a modified snapshot. The computer usable pro-
gram code further includes computer usable code for preserv-
ing an access of the first computing node to the data of the
database. The computer usable program code further includes
computer usable code for aborting, responsive to receiving a
signal of activity from the first computing node during the
applying and after a grace period has elapsed, the applying
such that the first computing node can continue serving the
database in the cluster.

BRIEF DESCRIPTION OF THE SEVERAL
VIEWS OF THE DRAWINGS

The novel features believed characteristic of the invention
are set forth in the appended claims. The invention itself,
however, as well as a preferred mode of use, further objectives
and advantages thereof, will best be understood by reference
to the following detailed description of the illustrative
embodiments when read in conjunction with the accompany-
ing drawings, wherein:

FIG. 1 depicts a block diagram of a network of data pro-
cessing systems in which illustrative embodiments may be
implemented;

FIG. 2 depicts a block diagram of a data processing system
in which illustrative embodiments may be implemented;

FIG. 3 depicts an example of tabular data within which
functional relationships and signatures can be identified in
accordance with an illustrative embodiment;

FIG. 4 depicts block diagram of speculative recovery using
storage snapshot in a clustered database in accordance with
an illustrative embodiment;

FIG. 5 depicts a block diagram of example functionality in
a takeover application for speculative recovery using storage
snapshot in a clustered database in accordance with an illus-
trative embodiment;

FIG. 6 depicts an example of log replay in accordance with
an illustrative embodiment;

FIG. 6A depicts a block diagram of an example circum-
stance of a rejoin operation in accordance with an illustrative
embodiment;

FIG. 6B depicts a block diagram of another example cir-
cumstance of a rejoin operation in accordance with an illus-
trative embodiment;

FIG. 7 depicts a flowchart of an example process of specu-
lative recovery using storage snapshot in a clustered database
in accordance with an illustrative embodiment;

US 9,098,453 B2

3

FIG. 8 depicts a flowchart of an example process of com-
municating database concurrency to a cluster in accordance
with an illustrative embodiment;

FIG. 9 depicts a flowchart of an example process for take-
over determination in accordance with an illustrative embodi-
ment;

FIG. 10-A depicts an example sequence of operations in an
example high-availability implementation for speculative
recovery using storage snapshot in a clustered database in
accordance with an illustrative embodiment; and

FIG. 10-B depicts an example sequence of operations in an
example high-availability implementation for speculative
recovery using storage snapshot in a clustered database in
accordance with an illustrative embodiment.

DETAILED DESCRIPTION

In a clustered database, a takeover solution is configured to
trigger upon detection of a failure in the primary computing
node that is serving the database. The recovery solution ini-
tiates a takeover of the database by moving the database
serving responsibilities to another node—the takeover node.

The illustrative embodiments recognize that recovery of a
database in a clustered environment is resource-intensive, and
a computationally expensive operation. The illustrative
embodiments further recognize that not all failures detected
in a primary node are fatal or non-recoverable failures. Some
failures presently detected can be regarded as false failures. A
false failure (or a falsely detected failure) is a condition that
appears to indicate that the associated computing node is not
active where the node is actually active but not performing
within certain parameters.

For example, heartbeat is a periodic messaging system
amongst clustered computing nodes. A heartbeat sent from a
node indicates to other nodes in the cluster that the sending
(heartbeating) node is alive and active. If a primary database
node fails to send a heartbeat within a designated time-win-
dow, a takeover node may conclude that the primary node has
become inactive and begin a database recovery operation. The
primary node, however, may be alive, but a condition in the
node may have prevented the thread that sends the heartbeat
from getting the processor time, or a condition in the network
may have delayed the heartbeat packet from reaching the
takeover node.

The example of heartbeat failure is not the only false fail-
ure. Many other false failures can similarly occur in a clus-
tered database environment. The illustrative embodiments
recognize that initiating a database recovery operation during
false failures is undesirable.

The illustrative embodiments used to describe the inven-
tion generally address and solve the above-described prob-
lems and other problems related to database recovery in clus-
tered database environments. The illustrative embodiments
provide a system, and computer program product for specu-
lative recovery using storage snapshot in a clustered database.
The illustrative embodiments are described with respect to a
snapshot of database data. The snapshot is a snapshot of a
storage volume—a data replication on a storage subsystem
layer—hence the reference to the snapshot as a “storage snap-
shot” herein. In a storage snapshot, all the change tracking
and disambiguation of access to the device is resolved on
storage layer, within one storage device, immune to the par-
tition of the servers for which the storage device provides
storage. A snapshot copy establishes a relationship with the
copy source and the target storage device. While a snapshot
relationship is active, after the point in time at which the

10

15

20

25

30

35

40

45

50

55

60

65

4

relationship has been initiated, both the source and target may
be further modified by applications.

The terms “snapshot” or “storage snapshot” used in this
disclosure refer to this generalized concept of data replication
on a storage subsystem layer. FlashCopy is an example imple-
mentation of a snapshot according to an embodiment as
implemented in some clustering systems. Subsequent use of
the term “FlashCopy” in this disclosure is used synony-
mously with the general concept of the storage snapshot,
including but not limited to the particular implementation of
storage snapshot in a particular cluster configuration.

Presently available takeover solutions for databases can be
broadly classified by their data replication techniques, con-
tent that is replicated, or mode of synchrony in the replication.
Classification according to data replication technique classi-
fies a disaster recover solution depending on whether the
database uses data replication on storage subsystem layer,
device layer, or on database layer. Classification according to
the content that is replicated classifies a disaster recover solu-
tion depending on whether the database replicates all data or
just the transaction logs.

Classification according to mode of synchrony classifies a
disaster recover solution depending on the degree of strict-
ness of completion of an Input/Output (I/O) operation on a
remote site before the /O is declared complete on the local
site. The various modes of synchrony include—(i) synchro-
nous, wherein data has to be written to the remote storage
before the I/O operation is complete; (i) near synchronous,
where the receipt of data is acknowledged by the process on
the remote site; (iii) asynchronous, where a transaction is
complete after the transaction data are sent to the process on
the remote site without waiting for acknowledgement of
receipt; and (iv) super-asynchronous, where a transaction is
complete after data has been written to a local buffer from
which data are sent to remote site.

Different clustered database setups allow a database dae-
mon instance (other than the primary database instance) dif-
ferent types of access. Some allow read-write, where the
daemon instance is allowed to read and write to the datastore
in use by the primary database instance. An example of such
a configuration is a parallel database where all database
instances have read-write access to the data store.

Some other clustered database setups allow read-only
access to the daemon instance, where the daemon instance is
allowed to read the datastore. An example of such a configu-
ration distributes committed transactions over the network to
one or more replica instances.

Some other clustered database setups allow a warm
standby, where a database instance performs log replay on a
separate database copy that is brought to read-write state in
case of failure. Log replay is the process of applying a trans-
action from a log entry.

Some other clustered database setups allow a cold standby
where a high availability cluster node is in standby mode to
start a database instance. In such a setup, a resource manage-
ment infrastructure of the cluster monitors the database and
supporting resources on the primary clustered server, so that
they can be restarted on another clustered server in case of
failure of the primary server. The supporting resources
include but are not limited to processors, memory, disks and
other devices, file-systems, IP configurations, performance
and other system configuration settings to enable an operating
environment for the database instance and possibly further
applications that depend on the database.

Takeover due to falsely detected failures in clustered high
availability architectures for databases causes the takeover
database instance to perform a substantial amount of transac-

US 9,098,453 B2

5

tion log replay before bringing the database back to an opera-
tional state. Transaction log replay is required after an
ungraceful termination of the database, which entails a shut-
down of the database without writing the in-memory buffers
of the database to disk. Before restarting the database, tables
need to be reconstructed from the transaction log on disk,
which is a slow process due to I/O performance limitations.
Depending on the amount of uncommitted transaction log
entries, log replay might take anywhere from minutes to
hours after ungraceful termination of a database. Whether a
given high-performance clustered database architecture uses
a low degree of synchrony, a warm standby, or none at all, log
replay according to present techniques is guaranteed to take
an amount of time that is not negligible.

The illustrative embodiments are described with respect to
certain false failures only as examples. Such example failures
are not intended to be limiting to the invention.

Furthermore, the illustrative embodiments may be imple-
mented with respect to any type of data, data source, or access
to a data source over a data network. Any type of data storage
device may provide the data to an embodiment of the inven-
tion, either locally at a data processing system or over a data
network, within the scope of the invention.

The illustrative embodiments are described using specific
code, designs, architectures, protocols, layouts, schematics,
and tools only as examples and are not limiting to the illus-
trative embodiments. Furthermore, the illustrative embodi-
ments are described in some instances using particular soft-
ware, tools, and data processing environments only as an
example for the clarity of the description. The illustrative
embodiments may be used in conjunction with other compa-
rable or similarly purposed structures, systems, applications,
or architectures. An illustrative embodiment may be imple-
mented in hardware, software, or a combination thereof.

The examples in this disclosure are used only for the clarity
of the description and are not limiting to the illustrative
embodiments. Additional data, operations, actions, tasks,
activities, and manipulations will be conceivable from this
disclosure and the same are contemplated within the scope of
the illustrative embodiments.

Any advantages listed herein are only examples and are not
intended to be limiting to the illustrative embodiments. Addi-
tional or different advantages may be realized by specific
illustrative embodiments. Furthermore, a particular illustra-
tive embodiment may have some, all, or none of the advan-
tages listed above.

With reference to the figures and in particular with refer-
ence to FIGS. 1 and 2, these figures are example diagrams of
data processing environments in which illustrative embodi-
ments may be implemented. FIGS. 1 and 2 are only examples
and are not intended to assert or imply any limitation with
regard to the environments in which different embodiments
may be implemented. A particular implementation may make
many modifications to the depicted environments based on
the following description.

FIG. 1 depicts a block diagram of a network of data pro-
cessing systems in which illustrative embodiments may be
implemented. Data processing environment 100 is a network
of computers in which the illustrative embodiments may be
implemented. Data processing environment 100 includes net-
work 102. Network 102 is the medium used to provide com-
munications links between various devices and computers
connected together within data processing environment 100.
Network 102 may include connections, such as wire, wireless
communication links, or fiber optic cables. Server 104 and

10

15

20

25

30

35

40

45

50

55

60

65

6

server 106 couple to network 102 along with storage unit 108.
Software applications may execute on any computer in data
processing environment 100.

In addition, clients 110, 112, and 114 couple to network
102. A data processing system, such as server 104 or 106, or
client 110, 112, or 114 may contain data and may have soft-
ware applications or software tools executing thereon.

Only as an example, and without implying any limitation to
such architecture, FIG. 1 depicts certain components that are
usable in an example implementation of an embodiment. For
example, database instance 105 in server 104 is an instance of
adatabase application in a clustered database that uses servers
104, server 106, and other data processing systems in a clus-
ter. Database instance 107 is another instance of the database
application acting as a takeover instance that operates in
server 106, which acts as a takeover node in the cluster.
Database instance 105 uses data 109 in storage 108 as the
datastore. Storage 108 or an equivalent thereof includes log
111, which is a repository of log entries made by database 105
during processing of database transactions in the primary
role. For example, log 111 is usable in a log replay in accor-
dance with an illustrative embodiment. Takeover application
117 includes an implementation of an embodiment described
herein. Takeover application 117 operates in conjunction with
database instance 107. For example, an existing database
application may include, or may be modified or configured to
operate in conjunction with, takeover application 117 to per-
form an operation according to an embodiment described
herein. Takeover application 117 enables the takeover of the
functions of database instance 105 in server 104 at database
instance 107 in server 106. Similarly, when database instance
107 is the primary instance, takeover application 115 enables
the takeover of the functions of database instance 107 in
server 106 at database instance 105 in server 104.

Servers 104 and 106, storage unit 108, and clients 110, 112,
and 114 may couple to network 102 using wired connections,
wireless communication protocols, or other suitable data con-
nectivity. Clients 110, 112, and 114 may be, for example,
personal computers or network computers.

Inthe depicted example, server 104 may provide data, such
as boot files, operating system images, and applications to
clients 110, 112, and 114. Clients 110, 112, and 114 may be
clients to server 104 in this example. Clients 110, 112,114, or
some combination thereof, may include their own data, boot
files, operating system images, and applications. Data pro-
cessing environment 100 may include additional servers, cli-
ents, and other devices that are not shown.

In the depicted example, data processing environment 100
may be the Internet. Network 102 may represent a collection
of networks and gateways that use the Transmission Control
Protocol/Internet Protocol (TCP/IP) and other protocols to
communicate with one another. At the heart of the Internet is
a backbone of data communication links between major
nodes or host computers, including thousands of commercial,
governmental, educational, and other computer systems that
route data and messages. Of course, data processing environ-
ment 100 also may be implemented as a number of different
types of networks, such as for example, an intranet, a local
area network (LAN), or a wide area network (WAN). FIG. 1
is intended as an example, and not as an architectural limita-
tion for the different illustrative embodiments.

Among other uses, data processing environment 100 may
be used for implementing a client-server environment in
which the illustrative embodiments may be implemented. A
client-server environment enables software applications and
data to be distributed across a network such that an applica-
tion functions by using the interactivity between a client data

US 9,098,453 B2

7

processing system and a server data processing system. Data
processing environment 100 may also employ a service ori-
ented architecture where interoperable software components
distributed across a network may be packaged together as
coherent business applications.

With reference to FIG. 2, this figure depicts a block dia-
gram of a data processing system in which illustrative
embodiments may be implemented. Data processing system
200 is an example of a computer, such as server 104 or client
112 in FIG. 1, or another type of device in which computer
usable program code or instructions implementing the pro-
cesses may be located for the illustrative embodiments.

In the depicted example, data processing system 200
employs a hub architecture including North Bridge and
memory controller hub (NB/MCH) 202 and South Bridge and
input/output (1/O) controller hub (SB/ICH) 204. Processing
unit 206, main memory 208, and graphics processor 210 are
coupled to North Bridge and memory controller hub (NB/
MCH) 202. Processing unit 206 may contain one or more
processors and may be implemented using one or more het-
erogeneous processor systems. Processing unit 206 may be a
multi-core processor. Graphics processor 210 may be
coupled to NB/MCH 202 through an accelerated graphics
port (AGP) in certain implementations.

In the depicted example, local area network (LAN) adapter
212 is coupled to South Bridge and 1/O controller hub (SB/
ICH) 204. Audio adapter 216, keyboard and mouse adapter
220, modem 222, read only memory (ROM) 224, universal
serial bus (USB) and other ports 232, and PCI/PCle devices
234 are coupled to South Bridge and I/O controller hub 204
through bus 238. Hard disk drive (HDD) 226 and CD-ROM
230 are coupled to South Bridge and 1/O controller hub 204
through bus 240. PCI/PCle devices 234 may include, for
example, Ethernet adapters, add-in cards, and PC cards for
notebook computers. PCI uses a card bus controller, while
PCle does not. ROM 224 may be, for example, a flash binary
input/output system (BIOS). Hard disk drive 226 and CD-
ROM 230 may use, for example, an integrated drive electron-
ics (IDE) or serial advanced technology attachment (SATA)
interface. A super /O (SIO) device 236 may be coupled to
South Bridge and 1/O controller hub (SB/ICH) 204 through
bus 238.

Memories, such as main memory 208, ROM 224, or flash
memory (not shown), are some examples of computer usable
storage devices. Hard disk drive 226, CD-ROM 230, and
other similarly usable devices are some examples of com-
puter usable storage devices including computer usable stor-
age medium.

An operating system runs on processing unit 206. The
operating system coordinates and provides control of various
components within data processing system 200 in FIG. 2. The
operating system may be a commercially available operating
system such as AIX® (AIX is a trademark of International
Business Machines Corporation in the United States and
other countries), Microsoft® Windows® (Microsoft and
Windows are trademarks of Microsoft Corporation in the
United States and other countries), or Linux® (Linux is a
trademark of Linus Torvalds in the United States and other
countries). An object oriented programming system, such as
the Java™ programming system, may run in conjunction with
the operating system and provides calls to the operating sys-
tem from Java™ programs or applications executing on data
processing system 200 (Java and all Java-based trademarks
and logos are trademarks or registered trademarks of Oracle
Corporation and/or its affiliates).

Instructions for the operating system, the object-oriented
programming system, and applications, logic, or programs,

10

15

20

25

30

35

40

45

50

55

60

65

8

such as database instances 105 and 107, and takeover appli-
cation 117 in FIG. 1, are located on at least one of one or more
storage devices, such as hard disk drive 226, and may be
loaded into at least one of one or more memories, such as
main memory 208, for execution by processing unit 206. The
processes of the illustrative embodiments may be performed
by processing unit 206 using computer implemented instruc-
tions, which may be located in a memory, such as, for
example, main memory 208, read only memory 224, or in one
or more peripheral devices.

The hardware in FIGS. 1-2 may vary depending on the
implementation. Other internal hardware or peripheral
devices, such as flash memory, equivalent non-volatile
memory, or optical disk drives and the like, may be used in
addition to or in place of the hardware depicted in FIGS. 1-2.
In addition, the processes of the illustrative embodiments
may be applied to a multiprocessor data processing system.

In some illustrative examples, data processing system 200
may be a personal digital assistant (PDA), which is generally
configured with flash memory to provide non-volatile
memory for storing operating system files and/or user-gener-
ated data. A bus system may comprise one or more buses,
such as a system bus, an [/O bus, and a PCI bus. Of course, the
bus system may be implemented using any type of commu-
nications fabric or architecture that provides for a transfer of
data between different components or devices attached to the
fabric or architecture.

A communications unit may include one or more devices
used to transmit and receive data, such as a modem or a
network adapter. A memory may be, for example, main
memory 208 or a cache, such as the cache found in North
Bridge and memory controller hub 202. A processing unit
may include one or more processors or CPUs.

The depicted examples in FIGS. 1-2 and above-described
examples are not meant to imply architectural limitations. For
example, data processing system 200 also may be a tablet
computer, laptop computer, or telephone device in addition to
taking the form of a PDA.

With reference to FIG. 3, this figure depicts a block dia-
gram of a clustered database environment that can be modi-
fied by using an illustrative embodiment. Primary node 302,
labeled “Node-A” is an embodiment of server 104 in FIG. 1.
Primary node 302 hosts database instance 304, which is an
example of database instance 105 in FIG. 1. Takeover node
352, labeled “Node-B” is an embodiment of server 106 in
FIG. 1. Takeover node 352 hosts database instance 354,
which is an example of database instance 107 in Figure.

Any distributed management of a database relies on a clus-
tering infrastructure that provides essential functions in dis-
tributed systems, such as detection of member failures, reli-
able messaging and Dbarrier synchronization. Such
infrastructure might be built into the database or the database
may rely on clustering services provided as part of a platform
infrastructure. FIG. 3 shows a typical component stack of a
clustering infrastructure.

Membership component 306 in Node-A and membership
component 356 in Node-B each maintains the state of the
various nodes in the cluster by sending heartbeats 390
between cluster members, across multiple redundant network
connections, e.g., networks 392 and 394. Heartbeats 390 can
also travel over paths across storage subsystems, such as path
396 across storage subsystem 398. Reliable messaging com-
ponents 308 and 358 in Node-A and Node-B, respectively,
provide essential functions for distributed systems, such as
reliable messaging and barrier synchronization.

Resource manager 310 in Node-A and resource manager
360 in Node-B, using the services of the lower layers, imple-

US 9,098,453 B2

9

ment distributed resource management in their respective
computing nodes. In the case of management of databases, a
resource manager, such as resource manager 310, can include
functions for relocating or restarting a database instance, such
as database instance 304, in response to a failure or perfor-
mance degradation. Resource managers 310 and 360 also
include functions for management of a data stream for repli-
cation between two servers, such as between Node-A and
Node-B. In one embodiment, resource manager 310 is a built-
in component of the database. In another embodiment,
resource manager 310 is a stand-alone system such as a set of
daemons that provides resource management in a high avail-
ability cluster.

Database instance 304 uses data 320 in datastore 322. Data
320 symbolizes the entire data of the database and may
occupy any amount of space in datastore 322. Resource man-
agers 310 and 360 manage datastore 322 as a resource, and
database instance 354 can use datastore 322 during a take-
over. Datastore 322 can also serve as an additional path for
heartbeats.

Presently, one cluster node will declare another node as
down if the node has not received heartbeats from the other
node for a configured maximum time-out, the grace period.
Presently, upon declaring a node as down, resource recovery
actions will start, which entail relocation of a database
instance to another server and other such expensive opera-
tions. For example, Node-B might stop receiving heartbeats
from Node-A for several reasons—(i) Node-A has crashed,
(i1) Node-A is in a state where the threads that send heartbeats
do not get timely CPU access, or (iii) all network connections
between Node-A and Node-B are severed, permanently or
temporarily, for a time span exceeding the grace period.

The illustrative embodiments recognize that scenarios (ii)
and (iil) in many circumstances are false failures, i.e. though
no heartbeats are received from Node-A, Node-A remains
alive, operational, or responsive.

Consider scenario (ii), when Node-A is not able to send
heartbeats for a preconfigured grace period. Using a presently
available disaster recover solution, Node-B will start to take
over resources for serving database instance 304 from
Node-A after the expiration of the grace period. Because
Node-B has taken over the resources used for serving the
database instance 304, Node-A must stop operating database
instance 304 and using those resources after the expiration of
the grace period. The resource usage at Node-A must stop to
prevent uncoordinated operation, such as two instances of
databases, to wit, instances 304 and 354, being concurrently
active without coordination in the cluster.

A cluster infrastructure that prevents uncoordinated opera-
tion of resources typically does so by a deadman switch,
which halts a cluster node if heartbeating threads on it have
not been able to send heartbeats for the configured grace
period. The combination of the grace period and the deadman
switch ensures integrity of access of managed cluster
resources.

Scenario (iil) is referred to as a partitioned cluster. A
premise of any cluster design is that such state should never be
reached because a cluster cannot function without network
connections to coordinate node actions. A cluster designer is
tasked with providing sufficient redundancy of network paths
in the cluster domain such that the likelihood of all paths
being affected by a failure concurrently is close to zero. In
reality, network connections between cluster nodes fre-
quently do not have sufficient redundancy either as a matter of
design, or during operation due to operating conditions. In

10

15

20

25

30

35

40

45

50

55

60

65

10

many cases, the condition that caused a failure to receive
heartbeats for the configured grace period due to scenario (iii)
is temporary.

The illustrative embodiments recognize that scenarios (ii)
and (iii) are presently assumed unlikely occurrences and thus
not much effort is presently expended in cluster designs to
implement optimal resource availability. The deadman
switch halts a node, thus terminating all resources for the
node if the node cannot send heartbeats. After a partition
re-heal, a cluster typically executes a domain merge protocol
to reconcile diverging views of resources caused by cluster
partition. A domain merge protocol specifies actions and a set
of steps to be executed after a cluster partition in order to
reconcile the states and information about cluster member-
ship. The domain merge protocol manages resources that
might have diverged during the partition and coordinate
actions to recover from the concurrent existence of converg-
ing states of members and resources, to again arrive at a
unified view of the cluster-wide managed resources.

The illustrative embodiments recognize that the halting
and reconciling procedures are insufficient, inefficient, and
expensive ways of handling failures, particularly false fail-
ures. In modern large-scale, complex, cluster domains, thread
scheduling aberrations, network partitions, and other reasons
for missing a heartbeat are more likely to occur.

The illustrative embodiments recognize that many such
reasons or events are very often temporary in nature and often
resolve themselves. For example, a temporary network parti-
tion might be caused by a network or storage switch reset
which typically completes within 2-3 minutes. As another
example, with a SCSI /O time-out of 30 seconds, an event in
the storage area network (SAN) that causes the loss of a few
Fibre Channel frames might cause a partition that will re-heal
shortly thereafter.

With up to 1024 CPUs and more in commonly used cluster
hardware, and with hardware virtualization, thread schedul-
ing aberrations are becoming increasingly common. Cases
where a crash has been caused by a deadman switch after the
default grace period of 20 seconds are common. Such cases
can be avoided by an embodiment recognizing and exploiting
the knowledge that the condition that caused the grace period
to elapse would have resolved on its own within a waiting
period. For example, had the deadman switch operation
waited for a waiting period, locks would have been released
and the blocked threads could have been scheduled again.

At the time the grace period and deadman switch design
was conceived, when virtualization and auto-recovery fea-
tures were not prevalent, halting a node more likely was the
right decision when heartbeat threads failed to complete I/O
within the grace period. Presently, with more complex thread
scheduling than before, and with features such as CPU virtu-
alization and Active Memory Sharing, halting the node is
more likely the incorrect response to missing a heartbeat.
(Active Memory Sharing is a trademark of International Busi-
ness Machines Corporation in the United States and in other
countries.) The illustrative embodiments recognize that in
modern clusters, often the cause for a failure, like the above
cause, is temporary, and therefore, a false failure.

The illustrative embodiments also recognize that inherent
in the present cluster design and takeover solutions is a single
grace period. In other words, presently, the timeout after
which a node is declared as down is the same for all cases of
failure, whether the failure is due to a node crash, a network
partition, or a thread scheduling aberration. While with older
technology, assuming the same grace period before declaring
a condition as final may have been reasonable, such assump-
tion is incorrect under modern circumstances.

US 9,098,453 B2

11

The illustrative embodiments recognize that each failure
scenario has its own time-period within which the failure can
remedy itself, and after which, to declare the failure as final
would be reasonable. For example, in the event of a node
crash, the failure can be final immediately, but in the case of
anetwork partition, present self-healing times are ofthe order
of approximately three minutes, before which the failure
should not be regarded as final. Similarly, depending on the
circumstances in a node, the typical duration of a switch reset
or a thread scheduling aberration can be even longer periods.
Resource takeover and database relocation are expensive
takeover solutions for failures that can turn out to be false
failures in much shorter time than the completion of the
takeover solution.

The illustrative embodiments further recognize that with
increasing sizes of datastores the penalty of an ungraceful
termination of a database as a result of a node failure has
increased. With memory used to back up internal buffers in
ranges up to Terabytes, a database after a crash can spend
significant time initializing, populating buffer pools, and
completing log replay. Due to performance considerations
and implementation costs, many users do not implement
warm standby solution with a short synchronization lag.

To provide high-availability in the modern complex infra-
structures, that use virtualization and significantly larger
datastores, the illustrative embodiments provide recovery
mechanisms for handling the changed failure patterns and
maintaining acceptable recovery times for enterprise scale
databases. Database outages due to unnecessary fallovers
from false failures can be avoided by using an embodiment.

With reference to FIG. 4, this figure depicts block diagram
of speculative recovery using storage snapshot in a clustered
database in accordance with an illustrative embodiment.
Node 402 (“Node-A”) executing database instance 404 is an
example of node 302 executing database instance 304 in FIG.
3. Node 452 (“Node-B”) is an example of node 352 in FIG. 3.
Data 414 in datastore 410 in data storage device 416 is similar
to data 320 in datastore 322 in FIG. 3. Data 410 and data 320
may occupy any amount of space in datastores 430 and 322,
respectively.

Log 412 is a record of transactions processed or being
processed by database instance 404 using data 414. Database
instance 404 reads and writes log 412 and data 414 while
operating.

Assume that Node-B detects a failure in Node-A, such as a
missed heartbeat from Node-A upon the elapse of a predeter-
mined grace period. Upon detecting the failure, prior-art
methods would terminate resource access of Node-A, initiate
aresource falloverto Node-B, and initiate a prior-art takeover
operation.

In contrast, an embodiment, implemented as takeover
application 456, does not terminate the access of Node-A to
the resources, including database instance 404’s access to
data 414. Instead, takeover application 456 creates snapshot
datastore 430 of datastore 410. The process of creating snap-
shot datastore 430 from data 410 creates snapshot 420 from
data 414 and also builds log 418 from log 412. For example,
log 418 starts at some point in log 412 and then is populated
aslog 412 receives additional entries. In one embodiment, log
418 already exists and is modified by the snapshot creating
process.

In one embodiment, snapshot datastore 430 is a data rep-
lication on storage subsystem layer. Furthermore, in an
embodiment, snapshot datastore 430 is a “copy on write”
replication of datastore 410, making snapshot datastore 430
significantly smaller than data 410 at the time of the replica-
tion. The compact size of snapshot datastore 430 also allows

5

10

15

20

25

30

35

40

45

50

55

60

65

12

the replication to be several orders of magnitude faster than a
full data replication. Copy-on-write allows database instance
404 to continue to manipulate datastore 410, allows database
instance 454 to manipulate snapshot datastore 430, and cop-
ies only those data storage blocks between datastore 410 and
snapshot datastore 430 that change due to database instances’
activities. Blocks in datastore 410 that are to be changed by
Node-A are replicated before Node-B uses those blocks from
snapshot datastore 430, or blocks that are written to by
Node-B to snapshot datastore 430 are replicated to datastore
410 if they are not yet part of snapshot datastore 430.

Other embodiments can use other modes for making the
snapshot copy. There are many flavors of snapshot modes,
such as split mirror, copy on write, incremental copy, redirect
on write, and equivalents thereof. Different implementations
implement these modes by other names but with similar prin-
ciples of operation. An embodiment can implement a snap-
shot using any such mode. A preferred embodiment uses the
copy on write mode to achieve a performance advantage over
the other modes.

Takeover application 456, and generally any other embodi-
ments of takeover application 115 and 117 of FIG. 1 refer-
enced in this disclosure, can be implemented in any suitable
form in a given environment. For example, in one embodi-
ment, takeover application 456 takes the form of'a “Takeover
Manager” or “Recovery Manager”, which is a component of
resource manager 354 in FIG. 3. In another embodiment,
takeover application 456 is a component of a distributed
database with built-in recovery capabilities that drives neces-
sary actions in response to a failure.

In one embodiment, at a time prior to Node-B performing
the transaction log replay operation, Node-A estimates, such
as by using a version of takeover application 115 in FIG. 1, a
time that the log replay is likely to take until every log entry in
log 418 is applied to a snapshot, such as to tables 420 in
snapshot datastore 430. Node-A notifies the cluster infra-
structure of the estimate in the form of a tunable or change-
able waiting time before which Node-A’s access to resources
should not be terminated.

In another embodiment, with suitably timed coordination
within the cluster at a time prior to performing the transaction
log replay operation, takeover application 456 estimates a
time that the log replay is likely to take until every log entry in
log 418 is applied to tables 420 in snapshot datastore 430.
Takeover application 456 notifies any further active cluster
nodes it can communicate with about this estimated time
before the concurrency begins. Takeover application 406 on
Node-A periodically notifies the cluster infrastructure of the
estimate in the form of a tunable or changeable waiting time
before Node-A’s access to resources should not be termi-
nated.

Takeover application 456, in conjunction with database
instance 454, begins a transaction log replay operation (also
referred to herein as applying the log entries) from log 418 to
tables 420 in snapshot datastore 430.

Allowing Node-A to retain access to allocated resources
and allowing database instance 404 to retain access to data
414 does not create a contention because database instance
454, while concurrent with database instance 404, uses snap-
shot datastore 430 for reading and writing.

This procedure defers the irreversible and expensive
actions for recovery of clustered databases in response to a
failure, counting on the possibility that the failure was a false
failure, such as missed heartbeats from Node-A due to tem-
porary conditions that are recoverable. The embodiment
leverages the knowledge that many conditions that cause

US 9,098,453 B2

13

failures, such as Node-B not receiving heartbeats from Node-
A, are temporary and resolve on their own.

If the failure condition resolves itself, such as if heartbeats
from non-heartbeating Node-A resume within the waiting
time, while actions taken in the course of recovery are still
reversible, that means before Node-B has finished log replay
and the recovery manager on Node-B revoked disk access for
Node-A, the recovery operation can simply be aborted and
database instance 404 remains undisturbed on Node-A that
currently hosts the primary instance of the database applica-
tion. Such a procedure according to an embodiment is par-
ticularly useful in scenarios where the database might require
a significant amount of time to become operational after an
ungraceful termination, such as in architectures where the
number of unprocessed entries in the transaction log is sig-
nificant.

If the failure condition does not correct itself, such as if
heartbeats do not resume from Node-A, Node-B—the take-
over node—performs log replay on snapshot 420 of data 414,
created at the time of detecting the failure. Access to datastore
410 from Node-A is preserved and database instance 404 can
still process transactions using datastore 410. If the condition
that caused the failure resolves on its own or by manual
intervention before transaction log replay by Node-B has
completed, i.e., during the waiting time, recovery actions are
aborted while never having disturbed the operation of data-
base instance 404 on Node-A.

In case the failure is permanent, e.g., when Node-A fails to
transmit heartbeats after the waiting period as well, takeover
application 456 performs further takeover actions for the
database after the records present in log 418 are applied to
snapshot tables 420 in snapshot datastore 430. One such
further action applies the changes in snapshot datastore 430 to
datastore 410.

In other words, takeover application 456 restructures the
recovery actions such that the most time consuming part, log
replay, occurs while maintaining operation of database
instance 404 undisturbed on Node-A, counting on the possi-
bility that the failure is a false failure and the condition caus-
ing the false failure is resolved while log replay on snapshot
tables 420 is still ongoing. In the worst case scenario of using
an embodiment, the recovery time in case of a permanent
failure in the cluster remains comparable to the recovery time
by using a prior art method of takeover.

According to one embodiment, other actions for the take-
over of the database after a permanent failure are as follows—
after having finished the log replay on snapshot tables 420,
Node-B disrupts disk access for Node-A, such as by setting
reserves on storage 416. An embodiment recognizes that
database instance 404 might have still been operational on
Node-A and may have added further entries to the transaction
log after snapshot datastore 430 was created. The two images
of'the database, sparsely populated log-applied snapshot 420
and data 414 as modified by database instance 404 during
Node-B’s log replay, are rejoined. The rejoining preserves the
changes made by Node-B during the log replay as well as any
transaction records Node-A might have added to data 414
after the creation of snapshot 420. Node-B replays, such as
via a function of takeover application 456, these still uncom-
mitted records from the log replay. Node-B acquires remain-
ing resources from Node-A for database operation, and bring
the database to an operational state, ready to process requests.

Thus, at the expense of some extra disk space and a slight
1/0 performance impact while snapshot 420 is being used, an
embodiment achieves an elastic time window, with the length
of the window being anywhere between the grace period and
the time to complete the log replay, for the decision on the

30

40

45

14

right recovery action, i.e., whether to leave database instance
404 active on Node-A or instead activate database instance
454 on Node-B.

An embodiment can select as the waiting time, any length
of'time from the grace period up to the time to apply all the log
entries to snapshot tables 420. Generally, the larger the data-
base, the more time is needed for the log replay, the costlier is
the fallover, and the longer the time window possible during
which the failure condition might correct on its own or might
be resolved by manual or automated troubleshooting.

In the case of a failure to send heartbeats due to thread
scheduling aberration, the embodiment does not halt the
affected node immediately after the grace period has elapsed.
An embodiment uses the cluster barrier protocol or the wait-
ing time window to make the determination whether to halt
the affected node later than the grace period.

While the embodiments have been described with respect
to one database instance being active at a given time, such
configuration is not intended to be limiting on the illustrative
embodiments. Concurrency of an embodiment can be applied
to other architectures of clustered databases, for example,
where Node-A and Node-B access the same datastore via a
common SAN.

For example, in one embodiment, the failure occurs when
the heartbeats from Node-A are not received at Node-B. In
this embodiment, database instance 404 is the active database
server and has read-write access to datastore 410. Node-B and
database instance 454 thereon acts as a warm standby. Upon
detecting degraded performance or failure at Node-A, with-
out disturbing Node-A’s access to datastore 410, Node-B
begins operating as a warm-backup by applying/replaying the
entries from log 418 to snapshot tables 420 as described
above.

As another example, in one embodiment, the failure occurs
when the heartbeats from Node-A are not received at Node-B.
In this embodiment, database instance 404 is acting as a warm
standby and has read-write access to datastore 410. Node-B
and database instance 454 thereon acts as a backup warm
standby. Without disturbing Node-A’s access to datastore
410, Node-B begins operating by applying/replaying the
entries from log 418 to snapshot tables 420 as described
above. Generally, and without limitation, an embodiment is
usable in any configuration of database instances 404 and
454, where, in the prior-art, database instance 454 would be
considered for taking over database instance 404’s responsi-
bilities due to a detected failure in Node-A.

With reference to FIG. 5, this figure depicts a block dia-
gram of example functionality in a takeover application for
speculative recovery using storage snapshot in a clustered
database in accordance with an illustrative embodiment.
Takeover application 502 can be implemented as takeover
application 456 in FIG. 4.

Component 504 creates a snapshot of an original database
image, such as by creating snapshot 430 of data 410 in FI1G. 4.
When a takeover node, such as Node-B, initiates creation of a
snapshot, component 504 issues commands for the creation
of a snapshot-to-database-image relationship. Component
504 writes the information about the snapshot-database
image pair to a disk. In one embodiment, each cluster node
has a dedicated location where to store snapshot-database
image relationships created by that node and no conflicts
occur due to concurrent access by multiple nodes.

In one embodiment, a cluster-wide known disk is config-
ured to store information about established snapshot-data-
base image relationships. Such a configuration allows more
than one node to perform recovery actions in case of multiple

US 9,098,453 B2

15

failures. Such a configuration also permits performing the log
replay in a distributed manner.

Component 506 replays transaction records logged into a
log record to the snapshot, such as in a log replay of the log
entries from log 418 in FIG. 4 to snapshot tables 420 in
snapshot datastore 430 in FIG. 4. Component 508 estimates
an amount of time the log replay operation is going to take.

Component 510 rejoins or discards the database copies,
such as by rejoining data 410 as modified by Node-A with
snapshot datastore 430 as modified by Node-B, or discarding
snapshot datastore 430. The rejoin and discard operation are
described in detail with respect to FIG. 6.

Component 512 manages the resource recovery during the
takeover. For example, when Node-B is operational, and is
performing log replay on snapshot tables 420, both Node-A
and Node-B are operations concurrently in the cluster.

For example, when Node-B is operational and has com-
pleted log replay on snapshot tables 420, component 512
establishes whether the waiting period (also known as a
resource grace period), which started at the expiration of the
grace period, has been met or exceeded. If Node-B receives
heartbeats from Node-A again and determines that Node-A is
again a part of the cluster domain for reliable messaging,
component 512 initiates further recovery steps, such as initi-
ating the abandonment of snapshot datastore 430, ending the
concurrency of Node-A and Node-B, and allowing Node-A to
resume the primary role in the cluster. On the other hand, if
upon completion of the log replay operation component 512
determines that Node-A is still not a part of the reliable
messaging in the cluster domain, component 512 waits for the
expiration of the waiting period before initiating further
recovery steps.

Without implying any limitation thereto on the illustrative
embodiments, one example operation of an embodiment is
now described to illustrate the above described functions.
Node-A determines, such as by using an equivalent of com-
ponent 512 in Node-A, the waiting period before the recovery
actions start at Node-B. Node-A communicates the waiting
period to other cluster nodes while Node-A can still commu-
nicate with those other nodes in the cluster. The resource
manager in Node-A, such as resource manager 304 in FIG. 3
or a sub-component thereof on Node-A, periodically queries
the database resource used by Node- A for the waiting period.
Alternatively, the database resource supplies the waiting
period information to an API to the resource manager. Based
upon Node-A’s projections of Node-A’s own state, the length
of'Node-A’s transaction log file, and using a recent or historic
values for the speed of log replay which depends on the I/O
speed and the nature of the log entries, the database resource
of'Node-A publishes a value for the estimated duration of log
replay.

The recovery manager of Node-A uses the value published
by the database resource to set an estimated waiting period. A
component in Node-A, such as a combination of components
306, 208, and 310 in FIG. 3, communicates the estimated
waiting period to all alive members of the cluster, such as by
using a synchronization protocol in the cluster. In one
example operation, once all alive cluster members acknowl-
edge the estimated waiting period, these other members use
the estimated waiting period in the following example man-
ner—a node, such as Node-B, that is deemed to be the take-
over node for the database, after completion of log replay on
the snapshot will wait at least for the waiting period, counting
from the begin of recovery actions, before progressing with
the next step in recovery actions; a node, such as Node-A, that
has not been able to send heartbeats for the duration of the

20

40

45

16

sum of the grace period and waiting period, either has the /O
suspended, or halts by the operation of the deadman switch.

In one embodiment, the waiting period is the last value that
is successfully communicated to both the takeover node and
the node assumed as failed. Barrier synchronization protocols
of'the reliable messaging layer provide that any given node in
the cluster can know if another node received and acknowl-
edged a notification.

Thus, the takeover node and the node detected as failed are
in agreement on actions regarding the avoidance of duplicate
resource acquisition. The node detected as failed will halt
before the takeover node takes over.

One embodiment tunes the waiting period based on several
input factors. Some example factors include the estimated
duration of a network outage due to a switch reset, and a
configured I/O time-out. It is generally abnormal for a thread
to not execute within a period longer than these factors. For
example, an example formula for determining the waiting
period may take as a minimum the expected time for a switch
reset, and may cap the waiting period at a large value, e.g., 30
minutes. Another example formula may only consider the
estimated duration of log replay. The above-described fac-
tors, formulae, and conditions are only examples and do not
imply a limitation on the illustrative embodiments. Many
other factors, formulae, and conditions can be recognized
based on this disclosure by those of ordinary skill in the art
and the same are contemplated within the scope of the illus-
trative embodiments.

With reference to FIG. 6, this figure depicts an example of
log replay in accordance with an illustrative embodiment.
Log 600 depicts log entries that are recorded in log 418 in
FIG. 4.

Log 600 is a snippet of a database log at various stages of
resource group recovery after takeover has started according
to an embodiment. Log 600 shows the content of log 418 on
the original on-disk representation of the database, written by
Node-A 402 in FIG. 4, up to termination of access of Node-A
to storage 416 in FIG. 4. Only as an example, and without
implying any limitation there from on the illustrative embodi-
ments, log 600 starts with entries Log Serial Number (LSN)
100 and 105, indicating the completion of a checkpoint opera-
tion in database terminology. For example, LSN 100 and 105
for a DB2 database correspond to synchronizing the buffer
pools (DB2 is a trademark of International Business
Machines Corporation in the United States and in other coun-
tries.)

In view 602 of log 600, in the midst of Node-A writing a
transaction record starting at LSN 10025, snapshot tables 420
in FIG. 4 is created as the beginning of a takeover event and
contains the log up to LSN 10025. Log replay operation on
snapshot tables 420 commits records up to LSN 10020 and
discards LSN 10025 because LSN 10025 belongs to an
incomplete transaction on snapshot tables 420.

View 604 of log 600 shows the condition of log 600 after
database operation has been terminated on Node-A and
Node-B has acquired access to the original on-disk image of
datastore 410. An embodiment, such as component 506 in
FIG. 5, compares the LSNs of the committed records and
finds that LSN 105 has been committed on the original data-
base image, datastore 410 maintained by Node-A. The
embodiment also finds that after LSN 105 and up to LSN
10020, the entries have been committed on snapshot tables
420 maintained by node-B.

The embodiment, such as component 506, determines that
further log entries or records, after LSN 10020, have been
added by node-A after snapshot datastore 430 was created
and have to be replayed/applied to snapshot tables 420, start-

US 9,098,453 B2

17
ing with LSN 10025 until the end, LSN 10210. In view 606 of
log 600, the embodiment, such as component 506, replays/
applies to snapshot tables 420, the log entries starting with
LSN 10025 until the end, LSN 10210. Thus, the embodiment
ensures that no transactions are lost by log replay on snapshot
tables 420.

Log replay on snapshot 420 according to an embodiment
works just as well for circular logs that are sometimes used in
database implementations. If log 600 is circular, the number
of'unprocessed records is bound by the log length that cannot
be exceeded. An embodiment, such as component 510 in FI1G.
5, rejoins database copies, to wit, data 414 and snapshot 420
as modified by Node-A and Node-B, respectively. The rejoin
operation commits the changes to the database image
obtained by log replay on snapshot 420 to the original image,
data 414 as modified by Node-A. The rejoin operation also
works for circular logs as long as the circular logs use a unique
LSN for each transaction after a checkpoint.

With reference to FIG. 6A, this figure depicts a block
diagram of an example circumstance of a rejoin operation in
accordance with an illustrative embodiment. The rejoin
operation depicted in FIG. 6A can be implemented in com-
ponent 510 in FIG. 5. Tables 652 is an example of data 414
accessed by Node-A in FIG. 4, log 654 is an example of
transaction log 412 written by Node-A in FIG. 4, log 656 is an
example of transaction log 418 created by Node-B during the
snapshot creation in FIG. 4, and tables 658 is an example of
snapshot tables 420 created by Node-B in FIG. 4. The shaded
blocks in transaction log 654 and 656 are log entries that have
been processed and committed to their respective tables by
the respective nodes. Blocks 6542, 6544 and 6546 in log 654
are transaction log entries that have been added to the log yet
have not been replayed.

A snapshot of tables 652 and transaction log 654 is taken at
time T as shown in FIG. 6 A. By the time Node-B has evalu-
ated all entries of transaction log 656, the state in which the
log is shown in FIG. 6 A, Node-A has not only added further
entries to transaction log 654 but also committed additional
log entries to tables 652 further than Node-B has in tables
658.

Accordingly, the snapshot of time T is discarded, and
Node-B processes those transaction log entries in transaction
log 654 that Node-A has not committed yet to tables 652.
Alternatively, a new snapshot of tables 652 and transaction
log 654 is taken and Node-B processes uncommitted log
entries 6542, 6544 an 6546 on a new version of tables 658.

With reference to FIG. 6B, this figure depicts a block
diagram of another example circumstance of a rejoin opera-
tion in accordance with an illustrative embodiment. The
rejoin operation depicted in FIG. 6B can be implemented in
component 510 in FIG. 5. Tables 672 is an example of data
414 accessed by Node-A in FIG. 4, log 674 is an example of
transaction log 412 written by Node-A in FIG. 4,10g 676 is an
example of transaction log 418 created by Node-B during the
snapshot creation in FIG. 4, and tables 678 is an example of
snapshot tables 420 created by Node-B in FIG. 4. Thus, log
674 and tables 672 form datastore 410, and log 767 and table
678 constitute snapshot datastore 430. The shaded blocks in
transaction log 674 and 676 are log entries that have been
processed and committed to their respective tables by the
respective nodes.

A snapshot of tables 672 and transaction log 674 is taken at
time T as shown in FIG. 6B and Node-B starts log replay. By
the time Node-B has processed all entries of transaction log
676, Node-A has added further log entries to transaction log
674, but Node-A’s internal table processing has not commit-
ted transaction log entries as far as Node-B, when Node-B

10

15

20

25

30

35

40

45

50

55

60

65

18

reaches the end of processing of transaction log entries that
are present in the snapshot. In FIG. 6B, log entry 6742 has
been added before snapshot creation and thus is contained in
log 676. An additional sequence of transaction log entries,
starting with an entry referenced by 6744 and ending with
6746 has been added by Node-A after creation of the snap-
shot. When Node-B has processed all transaction log entries
present in log 676 in the snapshot, log entry 6742 not been
processed by Node-A and also a sequence of additional
entries starting with entry 6744 and ending with entry 6746
has been added by Node-A.

Node-B reads the additional log entries, for example
entries starting from entry 6742 and ending at entry 6744 that
have been added by Node-A to transaction log 674 and copies
these entries to the end of transaction log 676 in a process
known as log shipping. When all additional entries from
transaction log 674 have been added to transaction log 676,
Node-B performs log replay on log 676 and tables 678, while
the snapshot relationship between data 410 and 430 exists.

An embodiment then performs reverse copy of log-re-
played tables 678 back to tables 672 and also reverse copy of
transaction log 676 back to log 674. The result is the same like
Node-A having performed log replay on datastore 410. Gen-
erally, reverse copy of a snapshot performs a block-wise copy
of'the data of the target device of a snapshot (snapshot datas-
tore 430) back to the source (datastore 410), and is typically
performed after changes are made to the target device.

Alternatively, another embodiment performs the reverse
copy after log shipping, and then performs log replay on
tables 672. This alternative method of the rejoin operation
also gives the same results, like having performed the log
replay operation on Node-A. FIGS. 6A and 6B describe the
actions to perform to re-join the data of the snapshot image
with the data maintained by Node-A for different states of the
transaction log maintained by Node-A. As will be understood
by one skilled in the art, the outlined techniques ensure that
the re-join of the snapshot with the data maintained by
Node-A preserves all entries added to the transaction log by
Node-A in all cases. No transaction is lost in the data image
obtained by a combination of log replay on the snapshot, log
shipping of entries and reverse copy of a snapshot image. It is
the combination of properties of snapshot reverse copy and
transaction log replay (the “repeating history property”) that
ensure that the database image obtained in the described way
is the same which would be obtained by performing log
replay on Node-A.

With reference to FIG. 7, this figure depicts a flowchart of
an example process of speculative recovery using storage
snapshot in a clustered database in accordance with an illus-
trative embodiment. Process 700 can be implemented in take-
over application 502 in FIG. 5.

A takeover application, operating in conjunction with a
database instance according to an embodiment, begins by
detecting a failure of a database node, such as a node that is
hosting a currently active database instance, (primary data-
base node hosting a primary database instance) (step 702).
The takeover application creates a snapshot of the database
data while preserving the primary database node’s connec-
tivity to the database data (step 704).

The takeover application applies to the snapshot the log
entries made by the primary database node, for example, in a
log replay operation (step 706). In one embodiment, the take-
over application considers the log entries made up to the point
of creating the snapshot in step 706.

The takeover application considers the state of the primary
database node and the state of the log replay (step 710). In one
embodiment, ifthe primary database node is responsive again

US 9,098,453 B2

19

and the log replay is yet incomplete (“A” path of step 710), the
takeover application abandons the log replay and resumes
database service from the primary database node (step 712).

In one embodiment, if the primary database node is respon-
sive again and the log replay has been completed (“B” path of
step 710), the takeover application abandons the log replay
and resume database service from the primary database node
at step 712. In another embodiment, if the primary database
node is responsive again and the log replay has been com-
pleted (“B” path of step 710), the takeover application pro-
ceeds to take over from the primary database node (step 714).
In one embodiment, if the primary database node is still
non-responsive at the time the log replay has been completed
(“C” path of step 710), the takeover application proceeds to
take over from the primary database node at step 714. The
takeover application ends process 700 thereafter.

Whether to abandon the log replay on the snapshot or to
take over from the primary database node is a determination
that the takeover application makes by considering a combi-
nation of several factors. Some example factors are described
with respect to FIG. 6. Another example factor is depicted in
FIG. 9.

These example factors are not intended to be limiting on
the illustrative embodiments. Those of ordinary skill in the art
will be able to conceive additional factors for determining
whether to take over from the primary database node or aban-
don the log-applied snapshot, and the same are contemplated
within the scope of the illustrative embodiments.

With reference to FIG. 8, this figure depicts a flowchart of
an example process of communicating database concurrency
to a cluster in accordance with an illustrative embodiment.
Process 800 can be implemented in takeover application 502
in FIG. 5.

A takeover application, operating in conjunction with a
database instance according to an embodiment, begins by
reading log entries from a database transaction log, such as
log 500 in FIG. 6 (step 802). The takeover application esti-
mates an amount of time log replay is expected to take for the
log entries (step 804). In one embodiment, the takeover appli-
cation that queries the database and communicates the esti-
mate for the duration of log replay runs periodically on the
node where the database is active. The last such estimate that
has been successfully communicated to all nodes is con-
firmed in a multi-phase protocol that involves acknowledge-
ment of receipt of updates by all nodes. Thus, the node that
owns the database and sent the broadcast of the new estimate
will know in case of a network partition whether all nodes
have received the update. If not all nodes have acknowledged
the estimated time for the concurrent phase, the node will not
update its own value for the waiting period.

The takeover application communicates the activity of a
concurrent database instance’s existence to the cluster (step
806). The takeover application ends process 800 thereafter.

With reference to FIG. 9, this figure depicts a flowchart of
an example process for takeover determination in accordance
with an illustrative embodiment. Process 900 can be imple-
mented in takeover application 502 in FIG. 5.

A takeover application, operating in conjunction with a
database instance according to an embodiment, begins by
detecting that the primary database node has become respon-
sive again, after having detected a failure in the primary
database node earlier (step 902). The takeover application
detects that the log replay operation has been completed on a
snapshot up to a certain point in the log (step 904). For
example, in one embodiment, the point in the log is the log
entry after which the snapshot was created. In another

5

10

15

20

25

30

35

40

45

50

55

60

65

20

embodiment, the point in the log is a log entry some time prior
to the time the snapshot was created.

The takeover application evaluates a combination of one or
more factors to determine whether to take over from the
primary database node. For example and without implying a
limitation there to, in one embodiment, the takeover applica-
tion determines, as one example factor, whether the perfor-
mance of the primary database node, after having become
responsive again, is acceptable according to some threshold
measure of performance (step 906).

If the performance is acceptable (“Yes” path of step 906),
the takeover application discards the log-applied snapshot,
allowing the primary database node to remain the primary
database node, and scrubbing a takeover in the cluster (step
908). The takeover application ends process 900 thereafter.

Ifthe performance of the responsive primary database node
is not acceptable (“No” path of step 906), the takeover appli-
cation begins a takeover action to take over the primary data-
base server role from the re-responsive current primary data-
base node (step 910). The takeover application rejoins the
log-applied snapshot with the database image data being used
by the current primary database node, for example, in the
manner described with respect to FIGS. 6 A and 6B (step 912).

The takeover application communicates the takeover
action to the cluster (step 914). The takeover application
completes the takeover action (step 916). The takeover appli-
cation ends process 900 thereafter.

FIGS. 10-A and 10-B are two parts of a continuous figure,
FIG. 10-A followed by FIG. 10-B. With reference to FIG.
10-A, this figure depicts an example sequence of operations
in an example high-availability implementation for specula-
tive recovery using storage snapshot in a clustered database in
accordance with an illustrative embodiment.

With reference to FIG. 10-B, this figure depicts an example
sequence of operations in an example high-availability imple-
mentation for speculative recovery using storage snapshot in
a clustered database in accordance with an illustrative
embodiment. Sequence 1000-1050 is performed by example
implementations of takeover application 502 in one or more
of the depicted clustered nodes.

Three example nodes, Node-A, Node-B, and Node-C are
shown clustered together for serving a database. Node-A is
depicted as the current primary database node at the begin-
ning of sequence 1000. An example false failure due to miss-
ing heartbeat from the primary database node is used in the
illustration.

Actions performed only locally at a node are underlined
under the node in that node’s column. Distributed actions that
use some coordination between a subset of the depicted clus-
ter nodes by distributed protocols are not underlined and
depicted across column lines. Further distributed actions or
cluster wide events are depicted by horizontal lines across
column lines. For instance, a sequence of distributed actions
might start and end with a distributed action depicted by a
horizontal line. A partitioned state, when cluster action on
each partition occur without coordination is indicated by a
vertical dotted line.

Sequence 1000-1050 illustrates a database managed by a
high availability cluster in accordance with an illustrative
embodiment. The database is part of resource group rg_ 1.
Sequence 1000-1050 shows the cluster behavior of the three
example nodes involved in the recovery of resource group
rg 1 after a network partition condition that gives rise to the
depicted failure. Note that the cluster domain might contain
any number of additional nodes that play no active role in the
depicted resource recovery. Sequence 1000-1050 depicts the
steps in distributed cluster processing, such as domain merge

US 9,098,453 B2

21

protocols, state broadcasts and distributed decision making
(voting) on the management of rg_ 1 and its resources. States
for rg_ 1 include ONLINE—the resources of rg_ 1 are con-
figured on the specified node. “rg_ 1@Node-C: ONLINE”
indicates a broadcast that the state of rg 1 on node-C is
“ONLINE”. Further states include OFFLINE—the resources
of rg 1 are not configured on the specified node,
ACQUIRE—the resources of rg__1 areinthe process ofbeing
acquired on the specified node, SAFE_CONCURRENT—
the part of acquisition actions on rg__1 that can be performed
safely while rg_ 1 may be in state ONLINE elsewhere, such
as transaction log replay on a snapshot, SAFE_CONCUR-
RENT_COMPLETE, —the actions to be performed while in
state SAFE_CONCURRENT have been completed.

While resource grouprg 1 isonline on Node-A, anetwork
partition occurs that renders Node-A unable to communicate
with the other nodes. Recovery actions forrg_ 1 are described
for different timing scenarios of termination of log replay in
relation to rejoin of the network partition.

Two example situations are depicted in sequence 1000. The
first situation, depicted in the top set of operations 9-10, is a
general description of actions taken during a domain merge
protocol that is run in response to heartbeats being received
again from Node-A while log replay is ongoing. The second
situation, depicted in the bottom set of operations 9-10, shows
the case where the decision taken during the domain merge
protocol entails leaving rg_ 1 on Node-A after the partition
re-heals.

Two example situations are depicted in sequence 1050. The
first situation is depicted in the top set of operations 9-10,
where Node-A becomes responsive while log replay is ongo-
ing but an actual takeover transpires due to Node-A’s perfor-
mance. Node-B performs log replay and later on continues
with the acquisition of resources of rg__1. The second situa-
tion, depicted in the bottom set of operations starting with
step 6, describes the scenario where heartbeats from Node-A
are not received due to a network partition and the partition
does not re-heal while Node-B is performing log replay. After
completion of log replay, the remaining cluster nodes,
Node-B and Node-C, exchange performance data to deter-
mine the optimal node to host rg__1 from here on. Node-C is
determined to be the optimal node and acquires the resources
ofrg 1, step 10. The acquisition of resources involves setting
reserves on the disks hosting the database, which causes
Node-A to lose access to these disks. In response to losing
disk access, Node-A which is operational brings the remain-
ing resources offline.

The flowchart and block diagrams in the Figures illustrate
the architecture, functionality, and operation of possible
implementations of systems, methods, and computer pro-
gram products according to various embodiments of the
present invention. In this regard, each block in the flowchart
or block diagrams may represent a module, segment, or por-
tion of code, which comprises one or more executable
instructions for implementing the specified logical
function(s). It should also be noted that, in some alternative
implementations, the functions noted in the block may occur
out of the order noted in the figures. For example, two blocks
shown in succession may, in fact, be executed substantially
concurrently, or the blocks may sometimes be executed in the
reverse order, depending upon the functionality involved. It
will also be noted that each block of the block diagrams
and/or flowchart illustration, and combinations of blocks in
the block diagrams and/or flowchart illustration, can be
implemented by special purpose hardware-based systems
that perform the specified functions or acts, or combinations
of special purpose hardware and computer instructions.

10

15

20

25

30

35

40

45

50

55

60

65

22

Thus, a system, and computer program product are pro-
vided in the illustrative embodiments for speculative recovery
using storage snapshot in a clustered database. An embodi-
ment allows a primary database node a tunable or changeable
speculative opportunity to recover from a failure over a period
longer than a grace period for the heartbeat messages. During
the speculative opportunity period, a takeover node processes
the database transactions from a log onto a snapshot of the
database data taken after the failure. An embodiment allows
the primary database node to resume serving the database if
the node recovers from the failure within the speculative
opportunity period. An embodiment takes over the primary
database node’s role using the log-applied snapshot if the
primary database node fails to recover from the failure within
the speculative opportunity period, or recovers without the
desired performance level.

As will be appreciated by one skilled in the art, aspects of
the present invention may be embodied as a system, method,
or computer program product. Accordingly, aspects of the
present invention may take the form of an entirely hardware
embodiment, an entirely software embodiment (including
firmware, resident software, micro-code, etc.) or an embodi-
ment combining software and hardware aspects that may all
generally be referred to herein as a “circuit,” “module” or
“system.” Furthermore, aspects of the present invention may
take the form of a computer program product embodied in one
or more computer readable storage device(s) or computer
readable media having computer readable program code
embodied thereon.

Any combination of one or more computer readable stor-
age device(s) or computer readable media may be utilized.
The computer readable medium may be a computer readable
signal medium or a computer readable storage medium. A
computer readable storage device may be an electronic, mag-
netic, optical, electromagnetic, or semiconductor system,
apparatus, or device, or any suitable combination of the fore-
going. More specific examples (a non-exhaustive list) of the
computer readable storage device would include the follow-
ing: a portable computer diskette, a hard disk, a random
access memory (RAM), aread-only memory (ROM), an eras-
able programmable read-only memory (EPROM or Flash
memory), a portable compact disc read-only memory (CD-
ROM), an optical storage device, a magnetic storage device,
orany suitable combination of the foregoing. In the context of
this document, a computer readable storage device may be
any tangible device that can store a program for use by or in
connection with an instruction execution system, apparatus,
ordevice. The terms “computer usable storage device,” “com-
puter readable storage device,” and “storage device” do not
encompass a signal propagation medium, any description in
this disclosure to the contrary notwithstanding.

Program code embodied on a computer readable storage
device or computer readable medium may be transmitted
using any appropriate medium, including but not limited to
wireless, wireline, optical fiber cable, RF, etc., or any suitable
combination of the foregoing.

Computer program code for carrying out operations for
aspects of the present invention may be written in any com-
bination of one or more programming languages, including
an object oriented programming language such as Java,
Smalltalk, C++ or the like and conventional procedural pro-
gramming languages, such as the “C” programming language
or similar programming languages. The program code may
execute entirely on the user’s computer, partly on the user’s
computer, as a stand-alone software package, partly on the
user’s computer and partly on a remote computer or entirely
on the remote computer or server. In the latter scenario, the

US 9,098,453 B2

23

remote computer may be connected to the user’s computer
through any type of network, including a local area network
(LAN) or a wide area network (WAN), or the connection may
be made to an external computer (for example, through the
Internet using an Internet Service Provider).

Aspects of the present invention are described herein with
reference to flowchart illustrations and/or block diagrams of
methods, apparatus (systems) and computer program prod-
ucts according to embodiments of the invention. It will be
understood that each block of the flowchart illustrations and/
or block diagrams, and combinations of blocks in the flow-
chart illustrations and/or block diagrams, can be imple-
mented by computer program instructions. These computer
program instructions may be provided to one or more proces-
sors of one or more general purpose computers, special pur-
pose computers, or other programmable data processing
apparatuses to produce a machine, such that the instructions,
which execute via the one or more processors of the comput-
ers or other programmable data processing apparatuses, cre-
ate means for implementing the functions/acts specified in the
flowchart and/or block diagram block or blocks.

These computer program instructions may also be stored in
one or more computer readable storage devices or computer
readable media that can direct one or more computers, one or
more other programmable data processing apparatuses, or
one or more other devices to function in a particular manner,
such that the instructions stored in the one or more computer
readable storage devices or computer readable medium pro-
duce an article of manufacture including instructions which
implement the function/act specified in the flowchart and/or
block diagram block or blocks.

The computer program instructions may also be loaded
onto one or more computers, one or more other program-
mable data processing apparatuses, or one or more other
devices to cause a series of operational steps to be performed
on the one or more computers, one or more other program-
mable data processing apparatuses, or one or more other
devices to produce a computer implemented process such that
the instructions which execute on the one or more computers,
one or more other programmable data processing appara-
tuses, or one or more other devices provide processes for
implementing the functions/acts specified in the flowchart
and/or block diagram block or blocks.

The terminology used herein is for the purpose of describ-
ing particular embodiments only and is not intended to be
limiting of the invention. As used herein, the singular forms
“a”, “an” and “the” are intended to include the plural forms as
well, unless the context clearly indicates otherwise. It will be
further understood that the terms “comprises” and/or “com-
prising,” when used in this specification, specify the presence
of stated features, integers, steps, operations, elements, and/
or components, but do not preclude the presence or addition
of one or more other features, integers, steps, operations,
elements, components, and/or groups thereof.

The corresponding structures, materials, acts, and equiva-
lents of all means or step plus function elements in the claims
below are intended to include any structure, material, or act
for performing the function in combination with other
claimed elements as specifically claimed. The description of
the present invention has been presented for purposes of
illustration and description, but is not intended to be exhaus-
tive or limited to the invention in the form disclosed. Many
modifications and variations will be apparent to those of
ordinary skill in the art without departing from the scope and
spirit of the invention. The embodiments were chosen and
described in order to best explain the principles of the inven-
tion and the practical application, and to enable others of

10

25

30

40

45

50

65

24

ordinary skill in the art to understand the invention for various
embodiments with various modifications as are suited to the
particular use contemplated.

What is claimed is:

1. A computer usable program product comprising a com-
puter usable storage device including computer usable code
for recovery in a database, the computer usable code com-
prising:

computer usable code for detecting a failure in a first com-

puting node, the first computing node serving the data-
base in a cluster of computing nodes;

computer usable code for creating, using a processor and a

memory, a snapshot of data of the database;

computer usable code for applying, using the processor and

the memory, a subset of log entries to the snapshot, the
applying modifying the snapshot to result in a modified
snapshot;
computer usable code for preserving an access of the first
computing node to the data of the database; and

computer usable code for aborting, responsive to receiving
a signal of activity from the first computing node during
the applying and after a grace period has elapsed, the
applying such that the first computing node can continue
serving the database in the cluster.

2. The computer usable program product of claim 1, further
comprising:

computer usable code for receiving the signal of activity

from the first computing node during the applying and
after the grace period for the signal of activity has
elapsed;

computer usable code for determining a level of perfor-

mance of the first computing node;

computer usable code for completing the applying respon-

sive to the level of performance begin below a threshold;
and

computer usable code for taking over the serving of the

database from the first computing node using the snap-
shot such that the first computing node cannot serve the
database in the cluster.

3. The computer usable program product of claim 2, further
comprising:

computer usable code for combining the modified snapshot

with a modified data of the database, wherein the modi-
fied data of the database results from the first computing
node continuing to modify the data of the database after
the creating of the snapshot.

4. The computer usable program product of claim 3,
wherein the combining comprises a reverse copy operation.

5. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a data processing system, and
wherein the computer usable code is transferred over a net-
work from a remote data processing system.

6. The computer usable program product of claim 1,
wherein the computer usable code is stored in a computer
readable storage device in a server data processing system,
and wherein the computer usable code is downloaded over a
network to a remote data processing system for use in a
computer readable storage device associated with the remote
data processing system.

7. A data processing system for recovery in a database, the
data processing system comprising:

a storage device, wherein the storage device stores com-

puter usable program code; and

a processor, wherein the processor executes the computer

usable program code, and wherein the computer usable
program code comprises:

US 9,098,453 B2

25

computer usable code for detecting a failure in a first com-
puting node, the first computing node serving the data-
base in a cluster of computing nodes;

computer usable code for creating, using a processor and a
memory, a snapshot of data of the database;

computer usable code for applying, using the processor and
the memory, a subset of log entries to the snapshot, the
applying modifying the snapshot to result in a modified
snapshot;

computer usable code for preserving an access of the first
computing node to the data of the database; and

computer usable code for aborting, responsive to receiving
a signal of activity from the first computing node during
the applying and after a grace period has elapsed, the
applying such that the first computing node can continue
serving the database in the cluster.

#* #* #* #* #*

10

15

26

